Copyright© 2011 JSHSS. All rights reserved.

Analysis of Relationship between Socio-Economic Factors and Subjective Health Condition among the Community Inhabitants of Japan

Keiji Muramatsu¹), Shinya Matsuda^{1,2}), Kenshi Hayashida²),

Tatsuhiko Kubo¹), Yoshihisa Fujino¹)

¹⁾Department of Preventive Medicine and Community Health, School of Medicine, University of Occupational and Environmental Health

²⁾Medical Informatics Division, University Hospital of University of Occupational and Environmental Health, Japan

Abstract

In order to examine the relationship between socio-economic factors and subjective health condition, we have analyzed the data of rural community inhabitants in Japan. We have distributed questionnaires by post for 2,928 households and received answer sheets from 1,580 households (54.0%). Contents of questionnaire are as follows; demographic data, subjective health status by SF8, lifestyle, social activity, and social capital. The results indicated that persons with better 'economic status' and higher 'frequency of participation to community events' showed statistically significant better subjective health status evaluated by SF8 questionnaires. As previous literatures have indicated, our results also suggested a significant impact of socio-economic factors to health status.

Key words: Subjective health status, Socio-economic factors, SF8, Health promotion

Introduction

The relationship between socio-economic factors and health status has long been attracting concerns of researchers for the last decades. As the WHO report indicated¹⁾, it is a solid fact that persons under the lower socio-economic condition tend to have lower health status. The inequalities in health among groups of socioeconomic status constitute the challenges for public health. Lower mortality and morbidity is associated with almost any positive indicator of socioeconomic status. Accessibility to the health services might be one of the explanations for these correlations. More educated people are better able to understand and use health information might be additional

Received: June 13, 2012 Accepted: August 8, 2012 Correspondence: K. Muramatsu, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka 807-8555, Japan; e-mail: km@med.uoeh-u.ac.jp argument. However, it is also possible that people in the lower social class may tend to have unhealthy behavior, such as tobacco smoking, drug abuse, or alcoholism^{2–4}).

Japan has long been thought as a society of less social divide. However, the problem of social divide is becoming a big social problem in Japan because of a long lasting economic slump after the end of bubble economy. In order to overcome the managerial difficulty, most of the Japanese corporations have tried to reduce the personnel cost. They have reduced fulltime employees and replaced them by part-time workers with limited work contract. It is said that this change of working culture has made our society unstable and caused social divide.

In this study, the authors examined the relationship between socio-economic factors and subjective health condition using the data of rural community inhabitants in Japan.

Age category		S	ex	Total	
		Male	Female	Total	
20–29	N	3	3	6	
	%	0.3%	0.9%	0.4%	
30–39	N	63	24	87	
	%	5.5%	7.0%	5.9%	
40–49	N	88	18	106	
	%	7.7%	5.2%	7.1%	
50–59	N	207	41	248	
	%	18.1%	11.9%	16.7%	
60–69	N	361	65	426	
	%	31.6%	18.8%	28.6%	
70–79	N	282	91	373	
	%	24.7%	26.4%	25.1%	
80–	N	138	103	241	
	%	12.1%	29.9%	16.2%	
Total	N %	1142 100.0%	345 100.0%	1487	
100.0%					

 Table 1
 Numner of respondents stratified by sex and age category

Studied Population and Method

Data were gathered from inhabitants of a rural community of Fukuoka prefecture. We have distributed questionnaires by post for 2928 households and received answer sheets from 1580 households (54.0%). Contents of questionnaire are as follows; demographic data, subjective health status by SF8, lifestyle, social activity, and social capital.

Based on the above data, we have analyzed the relationship between the subjective health status and socio-economic factors. All analyses were conducted by SPSS ver. 19 (IBM, Tokyo).

Results

Table 1 shows the number of respondents according to sex and age category. Male represents 76.8% (1,142) and female 23.2% (345). Persons of 60-69 were the largest proportion (426 persons, 28.6%) followed by 70-79 (373, 25.1%), 50-59 (248, 16.7%), and 80 years old and more (241, 16.2%). More than 70% of respondents were 60 years old and more.

Table 2 shows the frequency of community events participation stratified by sex and age category.

Usually, female shows higher participation rate, but female inhabitants tend to respond lower participation rate compared with male in this population. As we sent the questionnaire to the head of household, answer might be biased. In the case of household of which female is head, they might be single and possible to work outside household. This situation might decrease the participation rate of community event. Generally speaking, the participation rate increases up to 70-79 years old and decreases after 80 years old in this population.

Table 3 shows economic status (self evaluation) stratified by sex and age category. Female persons tend to respond "slightly problematic" or "problematic" for all age category compared with male. This might be a result of bias above mentioned. It is interesting that younger generation (under 50 years old) tends to respond "problematic".

Table 4 shows results of subjective health status measured by SF8 stratified by sex and age category. In all items, male average score tend to be higher than female. Results of ANOVA, we showed statisticallysignificant difference except for Bodily pain (BP), Mental health (MH) and Mental Component Summery (MCS) among female responders. In most items,

	Freq	Total			
	Often	Some-times	Not so frequent	Rare	Total
N	0	0	1	2	3
%	0.0%	0.0%	33.3%	66.7%	100.0%
N	7	16	21	13	57
%	12.3%	28.1%	36.8%	22.8%	100.0%
N	17	25	23	15	80
%	21.3%	31.3%	28.8%	18.8%	100.0%
N	51	70	41	35	197
%	25.9%	35.5%	20.8%	17.8%	100.0%
N	131	111	68	37	347
%	37.8%	32.0%	19.6%	10.7%	100.0%
N	98	97	44	30	269
%	36.4%	36.1%	16.4%	11.2%	100.0%
N	34	29	29	34	126
%	27.0%	23.0%	23.0%	27.0%	100.0%
N	338	348	227	166	1079
%	31.3%	32.3%	21.0%	15.4%	100.0%
N	0	0	2	0	2
%	0.0%	0.0%	100.0%	0.0%	100.0%
N	2	2	8	11	23
%	8.7%	8.7%	34.8%	47.8%	100.0%

3

17.6%

15

39.5%

18

29.5%

7

8.3%

20

21.5%

73

28.6%

Table 2	Frequency	of	partcipation	at	community	events
	/	-				

Male

20-29

30-39

40-49

50-59

60-69

70-79

80-

Total

20-29

30-39

40-49

50-59

60-69

70-79

80-

Total

Ν

%

Ν

%

Ν

%

Ν

%

Ν

%

Ν

%

4

23.5%

3

7.9%

13

21.3%

29

34.5%

18

19.4%

69

4

23.5%

6

15.8%

18

29.5%

36

42.9%

25

26.9%

91

21.7%

Female

p<0.01; Chi square test

the average score decreases with increasing age however male responders who are at working age were tended to show lower score than over 60 years old people. This result might be due to stress at work as in Survey on State of Employees' Health by MHLW showed: 'The percentage of workers who have anxiety, worry and stress about their work or occupational life had become 58.0%'.

Table 5 shows the results of correlation analysis. Both 'economic status' and 'frequency of participation to community events' showed statistically significant negative correlations with all of the items of SF8 among male responders. This result indicated that persons with better 'economic status' and higher 'frequency of participation to community events' showed statistically significant better subjective health status

6

35.3%

14

36.8%

12

19.7%

12

14.3%

30

32.3%

85

26.7%

23.0%

17

100.0%

38

100.0%

61

100.0%

84

100.0%

93

100.0%

318

100.0%

A				Economic status							
Age cate	egory		No problem	Not so problem	Slightly problematic	Problematic	Total				
Male	20–29	Ν	0	1	2	0	3				
		%	0.0%	33.3%	66.7%	0.0%	100.0%				
	30-39	Ν	8	30	14	10	62				
		%	12.9%	48.4%	22.6%	16.1%	100.0%				
	40–49	Ν	12	43	21	12	88				
		%	13.6%	48.9%	23.9%	13.6%	100.0%				
	50-59	Ν	22	104	59	19	204				
	0000	%	10.8%	51.0%	28.9%	9.3%	100.0%				
	60–69	N	47	190	96	24	357				
		%	13.2%	53.2%	26.9%	6.7%	100.0%				
	70–79	Ν	35	162	61	18	276				
		%	12.7%	58.7%	22.1%	6.5%	100.0%				
	80-	Ν	24	81	19	9	133				
		%	18.0%	60.9%	14.3%	6.8%	100.0%				
	Total	N	148	611	272	92	1123				
		%	13.2%	54.4%	24.2%	8.2%	100.0%				
Female	20–29	N	0	1	2	0	3				
		%	0.0%	33.3%	66.7%	0.0%	100.0%				
	30–39	Ν	2	9	8	4	23				
		%	8.7%	39.1%	34.8%	17.4%	100.0%				
	40–49	Ν	2	6	7	3	18				
		%	11.1%	33.3%	38.9%	16.7%	100.0%				
	50–59	Ν	5	20	11	5	41				
		%	12.2%	48.8%	26.8%	12.2%	100.0%				
	60–69	Ν	5	25	25	10	65				
		%	7.7%	38.5%	38.5%	15.4%	100.0%				
	70–79	N	13	40	22	12	87				
		%	14.9%	46.0%	25.3%	13.8%	100.0%				
	80-	Ν	27	47	22	4	100				
		%	27.0%	47.0%	22.0%	4.0%	100.0%				
	Total	Ν	54	148	97	38	337				
		%	16.0%	43.9%	28.8%	11.3%	100.0%				

Table 3 Economic status stratified by sex and age category (self evaluation)

p<0.01; Chi square test

evaluated by SF8 questionnaires Among the female responders, economic status showed statistically negative correlation with subject health status measured by SF8 except for Physical functioning (PF), Role physical (RP) and Physical Component Summary (PCS). On the other hand, frequency of participation to community events showed statistically negative correlation with subject health status measured by SF8 except for Role physical (RP) and Bodily pain (BP).

Discussion

As previous literatures have indicated^{1–4}, our results also suggested a significant impact of socioeconomic factors to health status. Several limitations must be considered when interpreting our results. First, this study is a cross-sectional study, so it is difficult to discuss direction of causality of socio-economic factors and subjective health condition. Until now, there are few studies analyzed the relationship between socio-economic status and subjective health

		General	Physical	hysical Role	5 III	X 71. 11.	Social	Mental	Role	Physical	Mental	
	age		health	function-	physical	Bodily	Vitality	function-	health	emotional	Component	Component
	category		(GH)	ing (PF)	(RP)	pain (BP)	(VI)	ing (SF)	(MH)	(RE)	Summary	Summery
Mala	20.20	N	2	2	2	2	2	2	2	2	(PCS)	(MCS)
Male	20-29	IN Maan	507	526	52.0	571	5 5 7 5	516	55 1	526	50 8	51.0
		SD	30.7	33.0	33.9	37.4	54.5	51.0	33.1	32.0	32.8	56
	20.20	SD N	0.0	0.0	0.0	4.9	0.0	3.3	4.1	5.0	5.0	5.0
	30-39	N	62	62	51.0	62	50 (60	62	62	58	58 40.7
		Mean	48.6	51.6	51.9	51.1	50.6	51.1	49.3	49.2	50.7	48./
	10 10	SD	7.7	6.1	4.2	9.6	6.9	7.7	7.8	6.7	6.0	7.1
	40–49	N	87	86	85	87	87	83	84	87	-77	77
		Mean	48.6	51.8	52.3	50.4	50.0	51.5	49.5	50.1	50.6	48.8
		SD	6.4	5.6	3.7	8.7	5.8	5.5	6.3	5.7	5.4	6.2
	50–59	Ν	204	203	202	205	204	193	204	205	187	187
		Mean	49.3	50.5	50.7	50.2	50.7	50.5	50.0	49.4	49.5	49.1
		SD	5.9	6.8	5.6	7.6	6.0	6.9	6.3	6.3	6.1	6.3
	60–69	Ν	356	356	355	357	354	345	356	358	333	333
		Mean	49.7	49.8	50.3	50.6	51.8	51.1	52.3	50.8	48.5	51.6
		SD	6.4	7.0	6.9	8.0	6.1	7.3	5.8	5.7	6.5	5.3
	70–79	Ν	265	264	261	266	260	247	265	265	236	236
		Mean	48.1	47.7	47.3	48.8	49.8	49.8	51.1	49.2	46.1	50.9
		SD	7.4	8.6	9.2	8.9	7.8	7.7	6.4	8.6	7.9	6.2
	80-	Ν	130	126	124	127	130	122	128	127	114	114
		Mean	46.0	43.2	42.8	47.9	47.8	45.8	50.5	46.6	42.1	49.6
		SD	7.5	11.6	11.5	8.6	7.6	10.9	7.2	11.2	9.5	8.1
	Total	N	1107	1100	1091	1107	1099	1053	1102	1107	1008	1008
		Mean	48.7	48.9	49.1	49.8	50.5	50.1	51.0	49.5	47.7	50.4
		SD	6.9	8.2	8.1	8.4	6.8	7.9	6.5	7.5	7.5	6.3
p-value ((ANOVA)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Female	20-29	Ν	3	3	3	3	3	3	3	3	3	3
		Mean	44 3	48.0	46 5	43.4	46 5	46.1	50.9	493	42.8	50.0
		SD	5.5	5.9	3.4	4.8	4.3	8.2	6.3	4.9	5.0	6.0
	30-39	N	49	23	23	24	24	23	24	23	22	22
	20 27	Mean	48.6	51.7	50.8	48.3	50.5	44 7	47.6	48.9	50.2	46.4
		SD	7.4	37	5.4	9.6	5.0	11.8	9.1	6.6	5.2	8.9
	40-49	N	18	18	18	18	18	16	18	18	16	16
	10 15	Mean	48.4	51.8	50.2	50.9	48.5	49.3	50.1	49.6	49.2	47.7
		SD	71	4.8	9.2	8.1	+0.5 8 5	86	89	7.0	7.0	93
	50 59	N	/.1	41	/1	41	41	30		/.2	30	30
	50-59	Moon	40.2	50.6	51.1	41	41	51.0	40.2	41	18.5	10.4
		SD	49.5	30.0	31.1	4/.4 0 1	49.5	51.0	49.5	49.0	40.3	49.4
	60 60	SD N	0.5	4.0	4.4	6.1	5.0	5.5	6.2	5.0	5.5	/.0
	00-09	IN Maan	49.2	04 49.7	40.2	49.2	51.0	38	04 40.6	03	37	37 40.2
		Mean	48.2	48./	49.3	48.2	51.0	48.9	49.6	49.1	47.2	49.2
	70.70	SD	/.6	1.2	/.0	10.0	/.1	8.4	1.1	/.8	/.3	/.4
	/0-/9	N	88	85	8/	88	86	82	88	87	/5	/5
		Mean	47.9	46.3	47.6	47.8	50.4	47.6	50.0	48.6	45.3	49.9
		SD	6.5	7.4	9.1	8.4	7.2	9.0	6.9	8.1	8.0	7.2
	80–	Ν	95	95	81	94	95	90	94	93	84	84
		Mean	45.4	39.8	39.9	46.8	46.1	44.0	47.7	43.1	40.3	47.2
		SD	7.7	13.2	13.1	8.7	8.2	11.8	8.4	13.0	10.3	8.8
	Total	Ν	333	329	329	332	330	311	332	328	296	296
		Mean	47.5	46.1	46.5	47.7	49.0	47.1	49.0	47.4	45.2	48.5
		SD	7.2	9.9	10.3	8.8	7.5	9.9	7.9	9.7	8.7	8.0
p-value ((ANOVA)		0.040	< 0.001	< 0.001	0.633	0.001	0.003	0.480	< 0.001	< 0.001	0.294
			1 207	2 828	2 520	2 072	1 470	2 980	1 000	2 176	2 522	1 856
			1.407	2.020	2.520	2.012	1.7/	2.700	1.///	2.170	2.525	1.050

Table 4Health status measured by SF8 stratified by sex and age category

			(/	0						1			
			Eco-	Commu-	General	Physical	Role			Social	Mental	Role	Physical	Mental
			nomia	nity event	health	function	nhysical	Bodily	Vitality	function	hoolth	amotional	Component	Component
			atatua	inty event		in a (DE)	(DD)	pain (BP)	(VT)	in a CE)			Summary	Summery
			status	partipation	(GH)	ing (PF)	(RP)			ing Sr)	(MH)	(KE)	(PCS)	(MCS)
Mala	Economic status	CC	1	0.001	0.207	0.161	0.200	0.176	0.243	0.151	0 227	0 223	0.171	0.210
whate	Leononne status	n value	1	0.071	0.207	0.101	0.200	0.170	0.243	0.151	0.227	0.225	0.171	-0.210
		p-value n	1133	1073	1100	1094	1089	1102	1003	10/18	1007	1102	1006	1006
	Community		1155	1073	_0.184	_0.172	_0 141	_0.121	_0.223	_0.196	_0.164	_0.193	_0.121	_0.207
	community	n value		1	0.104	0.172	0.141	0.121	0.223	0.170	0.104	0.175	0.121	0.207
	event partipation	p-value n		1088	1057	1054	1045	1058	10/19	1007	1055	1058	967	967
	General health			1000	1057	0.464	0.496	0.457	0.669	0.428	0.420	0.464	0.612	0.387
		n-value			1	0.404	0.490	0.457	0.00	0.420	0.420	0.000	0.012	0.007
	(ОП)	p value n			. 1117	1103	1095	1110	1101	1057	1106	1110	1018	1018
	Physical func-	CC			1117	1105	0 793	0.526	0.477	0.530	0.312	0.469	0.791	0.179
	tioning (PF)	n-value					0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	tioning (11)	n				1110	1092	1105	1096	1054	1102	1107	1018	1018
	Role physical	CC				1110	1	0.527	0 531	0.567	0 368	0.532	0.775	0.273
	(RP)	p-value					-	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	(10)	n					1101	1098	1086	1047	1095	1100	1018	1018
	Bodily pain (BP)	CC						1	0.453	0.388	0.384	0.428	0.754	0.173
		p-value							0.000	0.000	0.000	0.000	0.000	0.000
		n						1117	1104	1059	1109	1115	1018	1018
	Vitality (VT)	CC							1	0.442	0.400	0.463	0.598	0.443
		p-value								0.000	0.000	0.000	0.000	0.000
		'n							1109	1049	1098	1103	1018	1018
	Social function-	CC								1	0.495	0.613	0.420	0.624
	ing SF)	p-value									0.000	0.000	0.000	0.000
	ing or)	'n								1063	1059	1061	1018	1018
	Mental health	CC									1	0.649	0.146	0.865
	(MH)	p-value										0.000	0.000	0.000
	(1111)	n									1112	1110	1018	1018
	Role emotional	CC										1	0.319	0.760
	(RE)	p-value											0.000	0.000
	(122)	n										1117	1018	1018
	Physical Compo-	CC											1	-0.010
	nent Summary	p-value												0.748
	(PCS)	'n											1018	1018
	Mental Compo-	CC												1
	nent Summery	n-value												-
	(MCS)	n												1018
El-	(MCS)		1	0.149	0.205	0.000	0.022	0.170	0.204	0.140	0 279	0.200	0.019	0.270
Female	Economic status	n valua	1	0.148	-0.205	-0.009	-0.023	-0.1/9	-0.204	-0.148	-0.278	-0.208	-0.018	-0.270
		p-value	245	0.000	0.000	0.8/1	0.079	0.001	221	212	0.000	220	0.739	0.000
	Community		545	323	0 276	0 1 2 2	0 111	0.001	0 210	0 222	0 224	0.204	298	298
	Community	n voluo		1	-0.270	-0.122	-0.111	-0.091	-0.319	-0.223	-0.234	-0.204	-0.139	-0.240
	event partipation	p-value		327	316	313	311	0.107	314	207	316	312	284	284
	General health			521	1	0 566	0.583	0.464	0 704	0.500	0.468	0.538	0.642	0.456
		n-value			1	0.500	0.383	0.404	0.704	0.300	0.408	0.558	0.042	0.450
	(ОП)	p-value n			342	337	334	330	337	310	3/10	336	305	305
	Physical func-				542	1	0.809	0.502	0 547	0.581	0.401	0.628	0.866	0.317
	tioning (DE)	n-value				1	0.007	0.002	0.047	0.001	0.401	0.020	0.000	0.017
	tioning (FT)	n				338	332	336	334	316	335	332	305	305
	Role physical					550	1	0 492	0 569	0.651	0 484	0.698	0.816	0 445
	(PD)	n-value						0.000	0.000	0.001	0.101	0.000	0.010	0.000
	(KI)	n					335	334	331	315	333	332	305	305
	Bodily pain (BP)	CC					555	1	0 491	0 413	0 428	0 505	0 708	0 269
	Bouny puin (BI)	n-value						1	0.000	0.000	0.000	0.000	0.000	0.000
		n						341	337	319	339	335	305	305
	Vitality (VT)	CC						511	1	0 517	0 477	0 592	0.613	0 539
	vitality (vi)	n-value							1	0.017	0.000	0.000	0.015	0.000
		n							339	317	336	332	305	305
	Social function-	CC								1	0.595	0.694	0.496	0.724
	ing SF)	p-value									0.000	0.000	0.000	0.000
	ing 51)	n								320	319	315	305	305
	Mental health	CC									1	0.684	0.251	0.883
	(MH)	p-value										0.000	0.000	0.000
	()	n									341	336	305	305
	Role emotional	CC										1	0.507	0.790
	(RE)	p-value											0.000	0.000
	× /	'n										337	305	305
	Physical Compo-	CC											1	0.147
	nent Summary	p-value												0.010
	(PCS)	n											305	305
	Mental Compo-	CC												1
	nent Summerv	p-value												
	(MCS)	n												305
	(1100)													

Table 5 Correlation coeficients (CC) among the socio-economic factors and items of SF8 questionnaire

condition in a longitudinal design⁵). In a recent study, Klein *et al.* showed that social relations are an important explanatory factor for health inequalities in a longitudinal design⁵). However, the effectiveness of intervention is unclear, therefore we have to organize social programs targeting not only to health promotion but also to community development.

So far as the causal pathway, there have been several theories. Fuchs indicated the difference of time preference would cause different attitude for healthy life style⁶. He has suggested that a person with higher time preference tends to invest for future and as a result not to take unhealthy life style, such as smoking and heavy drinking. A better time preference is associated with more invest in education for oneself and one's children which might explain a positive relationship among educational, economic and health status.

According to our previous study using the Family Income and Expenditure Survey in Japan⁷), the elasticity of education has been consistently greater than unity. This result suggested that education is very important demand for Japanese household. By contrast, an increase in income leads to a fall in the tobacco smoking suggesting that people living in the household of lower socioeconomic status were likely to consume more tobacco. This result might support the Fuchs' theory on the relationship between education and health status.

Considering the economic difficulty to which most of the local municipalities face, it is rather difficult to largely expand social budget for supporting persons with socio-economic difficulty. One of the possible solutions is to develop a workfare type of social program. The low economic situation during 20 to 60 years old has a severe effect on the socio-economic status of old age period because of lower pension (no pension is also possible) and possibly worse health status. As the experiences of other countries such as Nordic countries, the workfare type of social programs show a promised effect on workability. It is strongly recommended for the Japanese government to promote this type of program in order to decrease the social divide.

References

- Wilkinson RG and Marmot M. (eds). Social Determinants of Health; The Solid Facts, 2nd editions, Geneva, WHO, 2003.
- Mackenbach JP, Stirbu I, Roskam AJ, et al.: Socioeconomic inequalities in health in 22 European countries. N Engl J Med 358, 2468–2481 (2008).
- Marmot M.: Social determinants of health inequalities. Lancet 365, 1099–1104 (2005).
- Fukuda Y, Nakamura K, Takano T.: Accumulation of health risk behaviours is associated with lower socioeconomic status and women's urban residence: a multilevel analysis in Japan. BMC Public Health 5, 53 (2005).
- Klein J, Vonneilich N, Baumeister SE et al.: Do social relations explain health inequalities? Evidence from a longitudinal survey in a changing eastern German region.: Int J Public Health 57, 619–627 (2012).
- Fuchs, Victor R. "Time Preference and Health: An Exploratory Study." Economic Aspects of Health, edited by Victor R. Fuchs, pp. 93–120. Chicago: University of Chicago Press, 1982.
- Yano J, Pham TM, Matsuda S.: The income elasticity of education and tobacco smoking in Japan: The Family Income and Expenditure Survey during the 2000-05 year period, APJDM 4, 83–87 (2010).